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Multiple Test Procedures for Identifying the 
Maximum Safe Dose 

Ajit C. TAMHANE, Charles W. DUNNETT, John W. GREEN, and Jeffrey D. WETHERINGTON 

We consider dose response studies for safety assessment of crop protection compounds and drugs, and we offer a hypothesis testing 
approach for identifying the maximum dose level that is guaranteed to be safe with preassigned confidence. The focus is on step-down 
(SD) multiple test procedures for identifying the maximum safe dose. We propose two classes of contrasts among the dose means as test 
statistics for these procedures: pairwise contrasts (PC) and Helmert contrasts (HC). The first procedure (SD2PC) consists of a sequence 
of ordinary t tests and is thus easy to apply, but it can have very low power for certain step response functions. The second procedure 
(SDIHC) does not suffer from this drawback, but it requires a weak monotonicity assumption for its mathematical validity. The powers 
of SD2PC and SDlHC are studied via Monte Carlo simulation. We recommend SD2PC for linear response functions and SDlHC for step 
response functions. The procedures are illustrated by applying them to data from an aquatic toxicity laboratory experiment conducted to 
assess the safe level of a pesticide. 

KEY WORDS: Dose response; Familywise error rate; Minimum unsafe dose; Multiple comparisons; Multivariate t-distribution; Step- 
down multiple testing procedure; Toxicology. 

1. INTRODUCTION 

Crop protection products such as pesticides, herbicides, 
and fungicides are intended to be harmful to certain targeted 
species, but they should be safe for nontargeted species. A 
thorough screening is done by conducting an extensive battery 
of tests to assess the safety of these products. From the test 
results, the company hoping to market the product must deter- 
mine the conditions under which the product is safe to use, 
and the company's assessment must be approved by the regu- 
latory agencies. Statistical analysis of the data is an important 
part of this process for both the company and the regulator. 
At present, in many situations, the precise statistical meth- 
ods that must be used are not agreed on. Rather, it is left to 
the company and regulatory statisticians to select and defend 
appropriate methods. In addition, toxicologists must weigh the 
evidence and come to an overall assessment of safe levels of 
product use. Similar safety issues arise in drug testing. 

Traditionally, safe levels have been determined from experi- 
mental data through hypothesis testing. The no adverse effects 
level (NOAEL) is defined as the highest dose or concentra- 
tion of a chemical that induces no significant adverse effect 
(Crump 1983; Gaylor 1983; Yanagawa, Kikuchi, and Brown 
1997). Tukey, Ciminera, and Heyse (1985) employed a simi- 
lar approach to identify the no statistical significance of trend 
(NOSTASOT) dose. A criticism of this hypothesis testing 
approach is that smaller and less sensitive experiments result 
in higher doses being declared safe, which is the opposite 
of what is desired. Another criticism is that it tests the null 
hypothesis of no effect (a common practice in carcinogenicity 
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and toxicity studies) instead of a positive effect that is deemed 
to be biologically safe. 

There is a school of practitioners who prefer to use regres- 
sion methods; see, e.g., Crump (1983). On the basis of a fitted 
model, a dose is estimated that produces a change in the mean 
response of a specified percent (e.g., 5, 10, or 20%) compared 
to the zero dose. Although such an approach has some advan- 
tages, routine industrial experiments are too small to allow 
fitting a realistic regression model, especially in the tails of 
the dose response function. The expense involved in conduct- 
ing sufficiently large industrial experiments is prohibitive. We 
have encountered toxicological datasets for which several non- 
linear regression models fit equally well and yet give widely 
different estimates of the safe dose to the extent that their 
95% confidence intervals are disjoint. Furthermore, biological 
reactions to chemicals are not sufficiently well understood to 
postulate an appropriate class of regression models. 

We offer a hypothesis testing approach that meets the criti- 
cisms of the conventional hypothesis testing approach by mak- 
ing the modifications given in items 1 and 2 in the following 
list. Although our approach does not entail any model fitting, 
it nevertheless captures the spirit of the regression approach, 
as explained in item 3. To summarize, the following are the 
features of our approach and their resulting advantages. 

1. Hypotheses are set up so that the burden of proof of 
safety is on the data. New multiple test procedures are 
proposed to find the maximum safe dose (MAXSD). 
These procedures control the probability of declaring any 
unsafe dose as safe and thus protect the consumer's risk. 

2. Instead of testing for a zero difference from the control 
mean, a threshold of safety equal to a specified fraction 
A of the control mean is tested (assuming that a smaller 
mean response represents more toxicity). It is a common 
industry practice to regard a dose level as safe if the 
corresponding expected response is greater than a spec- 
ified fraction A of the expected control response. The 
choice of A encourages industry and regulatory agencies 
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to come to an agreement on what level of adverse effect 
is acceptable. 

3. In contrast to the conventional regression approach, our 
approach does not assume a precise mathematical dose 
response relationship. However, for test statistics, it uses 
contrasts of the dose means that can be chosen to mimic 
the likely shape of the dose response function. 

The outline of the paper is as follows. Section 2 describes 
a practical example encountered in the toxicological test- 
ing laboratories of the DuPont Company. Section 3 gives 
the assumptions and notation. Section 4 describes the prob- 
lem formulation and the test procedures for identifying the 
MAXSD. Section 5 describes a simulation study to compare 
the powers of competing procedures. Section 6 outlines the 
extensions to unbalanced data. In Section 7, we return to the 
example from Section 2 and illustrate how the procedures 
are applied. The FORTRAN programs needed to perform cal- 
culations for the proposed test procedures have been made 
available at the web site http://lib.stat.cmu.edu/general. We 
conclude with a discussion in Section 8. 

2. EXAMPLE: TOXICOLOGICAL EVALUATION OF 
A PESTICIDE FOR ENVIRONMENTAL IMPACT 

To determine the effect of run-off on aquatic life, one type 
of experiment conducted is the 21-day chronic exposure of 
the tiny freshwater crustacean Daphnia magna (commonly 
referred to as daphnids) to the compound. Daphnids are water 
fleas that are used not only to test the toxicity of known toxi- 
cants (such as pesticides) but also to test the sensitivity of the 
whole effluents when the composition of toxicants in the efflu- 
ents is difficult to determine analytically. They are selected in 
part because of their sensitivity to chemicals. 

Daphnids of the same age (essentially neonates) and genetic 
stock are randomly assigned to a water control, a solvent con- 
trol, or one of six concentrations of a pesticide, which for 
the purpose of this discussion will be referred to as NoPest. 
Although many biological endpoints are measured in such 
experiments, we examine only the growth, as measured by 
the lengths of the daphnids after 21 days of continuous expo- 
sure. Because this compound is not highly soluble in water, a 
standard nontoxic solvent is added to the water to increase its 
solubility. In a few instances, the solvent itself unexpectedly 
appears to affect the growth of the daphnids, so both a water 
control and a solvent control are included. A preliminary sta- 
tistical test is done to compare these two controls. If no signif- 
icant difference is found, the controls are combined for further 
testing to increase power; otherwise, only the solvent control 
is used in subsequent statistical tests. Initial lengths of daph- 
nids are impossible to measure with the current experimental 
equipment. However, care is taken to ensure that none is of 
unusual size or appearance. Final lengths are measured after 
the 21-day exposure period when the daphnids are sacrificed. 

Six nominal concentrations of NoPest were tested: .3125, 
6.25, 12.5, 25, 50, and 100 ppm. (These concentrations are 
in the same proportion to the actual concentrations used, but 
they are coded for proprietary reasons.) Forty daphnids were 
randomly assigned to each of the two control and six treatment 
groups. The daphnids in each group were randomly divided 

into subgroups of four each and were placed in 10 different 
tanks (a total of 80 tanks) with controlled concentrations. Over 
the course of the experiment, some daphnids died, so that the 
sample sizes available at the end were 40 in each control group 
and 38, 39, 35, 35, 33, and 4 in the six treatment groups. Note 
the increased mortality with dose, especially the highest dose. 

Lethal as well as sublethal effects of NoPest are of inter- 
est. However, a simultaneous analysis of both effects poses 
formidable statistical difficulties because the deceased daph- 
nids are informatively censored, and there is no simple way to 
take this into account. There are no predeath length measure- 
ments available, and the biological mechanism causing death 
(e.g., lack of adequate growth or toxic effects on some body 
organs) is not well understood. To obviate these difficulties, 
Capizzi et al. (1985) recommended a two-stage approach for 
the design and analysis of such aquatic toxicity studies that 
examines survival first and then evaluates sublethal effects of 
those concentrations that do not significantly affect survival. 
The goal in this experiment was to evaluate only the sublethal 
effect on growth. Therefore, the 100 ppm concentration group 
was omitted from further analysis because of the high (90%) 
mortality. For the same reason, the modest level of mortality 
(2.5% to 17.5%) at the concentrations of interest was ignored 
in the present analysis, and the observed sample sizes were 
regarded as fixed. 

The daphnid length data were coded for proprietary rea- 
sons without affecting their statistical properties. The sum- 
mary statistics are shown in Table 1, and the side-by-side box 
plots are shown in Figure 1. The outliers revealed in the box 
plots were left in the data because no biological justification 
could be found to reject those observations; also, no essential 
differences were found in the results when we analyzed the 
data with and without the outliers. The normality assumption 
was verified by making a normal plot of the residuals and the 
Shapiro-Wilk test. The Levene test for homogeneity of vari- 
ances yielded nonsignificant result (p = .560). 

An analysis of variance (ANOVA) for the data obtained by 
treating the tanks as random and nested inside the treatment 
groups is shown in Table 2. We see that the tank-to-tank vari- 
ation is not statistically significant. Therefore, we pooled the 
corresponding sum of squares with the error sum of squares, 
resulting in a mean square error equal to .0302 with 253 
degrees of freedom. 

The difference between the water and solvent control 
groups is not statistically significant (t = .265); therefore, in 
subsequent analysis, these two groups are combined to yield a 

Table 1. Summary Statistics for the Daphnid Length Data 

Dose NoPest concentration Sample Mean length Std. dev. 
level (ppm) size (mm) (mm) 

0 Water control 40 3.9952 .1519 
0 Solvent control 40 4.0055 .1472 
1 0.3125 38 3.9908 .2110 
2 6.25 39 3.8108 .1504 
3 1 2.5 35 3.6306 .1961 
4 25.0 35 3.4600 .1 726 
5 50.0 33 3.2106 .1829 
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Figure 1. Side-by-Side Box Plots of the Daphnid Length Data. 

control group of 80 daphnids. Compared to the combined con- 
trol mean of 4.000 mm, the treatment groups show decreases 
in mean length of .24%, 4.74%, 9.24%, 13.5 1%, and 19.74%, 
respectively. In the toxicology community, opinions about 
what constitutes a biologically significant effect have ranged 
between 5% and 25% adverse effect. If we take an average of 
this range, i.e., 15% or A = .85, as biologically unsafe, then 
we would like to know which dose is MAXSD for this value 
of A. 

3. NOTATION AND ASSUMPTIONS 

Denote a set of increasing dose levels by 0, 1, 2, ... , kg 
where 0 denotes the zero dose control. Consider a one-way 
layout in which ni experimental units are tested at the ith dose 
level (i = 0, 1, . . . , k). Let ,ti be the mean response at the ith 
dose level, which is estimated by the corresponding sample 
mean ji. We assume that the j3 are mutually independent with 

Yi - N(uti, &-2/ni) for i = 0, 1, . . . , k, where o-2 is the exper- 
imental error variance. Let s2 be an unbiased estimate of o-2 
based on v degrees of freedom such that VS2/o-2 is distributed 
as x2 independently of the Yj. Usually, s2 is the ANOVA mean 
square error with v = ,k ni - (k + 1) degrees of freedom. 
Through Section 6, we assume balanced data with n1 = n for 
i = 1, 2, ... , k with no possibly different from n. The ratio 
r = n0/n is generally greater than or equal to 1. 

For a specified fraction A, the ith dose is regarded as safe 
if Aui > Auto and as unsafe if /ui < A4to. The MAXSD and the 
minimum unsafe dose (MINUD) are defined as follows: 

MAXSDA = max{i: 1ui > A4it0} and 

MINUDA = MAXSDA +1= min{i: / i < A40} . (3.1) 

Table 2. Analysis of Variance of Daphnid Lengths 

Source SS d.f. MS F p-value 

Treatment 18.8110 6 3.1352 103.09 .000 
Tank (group) 1.9166 63 .0304 1.01 .468 
Error 5.7265 190 .0301 
Total 28.0501 259 

NOTE: SS = sum of squares.. d.f. = degrees of freedom. MS = mean square error. F = MS/d.f. 

If all doses are unsafe, then we define MAXSDA = 0; simi- 
larly, if all doses are safe, then we define MINUDA = k + 1. 

We assume that for specified A, 

/uk > Ap-o for all i < MAXSDA and 

I-Li < A-to for all i > MAXSDA. (3.2) 

This assumption implies that any dose less than or equal 
to MAXSDA is safe and any dose greater than MAXSDA 
is unsafe. Unfortunately, there is no statistical test to check 
assumption (3.2). The stronger assumption of monotonicity, 

Ao >_ A > ... >_ Ak (3-3) 

with at least one strict inequality, is easier to check by using, 
e.g., Bartholomew's (1959) test for ordered means as modi- 
fied by Chase (1974) for increased sample size in the con- 
trol group. Implications of violations of assumption (3.2) are 
discussed in Section 8. We refer to (3.2) as the weak mono- 
tonicity assumption and to (3.3) as the strong monotonicity 
assumption. 

4. IDENTIFYING THE MAXIMUM SAFE DOSE 

4.1 Problem Formulation 

Consider the hypotheses 

Hoi: /j < A-to versus Hli: /tj > A-o, 

i=l1,2,. ..,k. (4.1) 

Thus, a dose is assumed unsafe unless proved safe. Because 
of assumption (3.2), it follows that {Hoi, i = 1, . . , k} is a 
closed family. In fact, we can write (4.1) as 

k k 

Hoi = nHo0 versus HUi = U H1j, i = 1, 2, ... , k. (4.2) 
j=i j=i 

This representation is useful for constructing step-down test 
procedures discussed in Section 4.2. 

We restrict to multiple test procedures that strongly con- 
trol the type I familywise error rate (FWE) for this family of 
hypotheses; specifically, we require 

FWE = P{Any true Hoi is rejected} 

= P{Any unsafe dose is declared safe} < a, (4.3) 

where a is a specified overall significance level. We define the 
sample MAXSDA (denoted by MAXSDA) as the highest dose 
for which ,'ti > Aju0 can be demonstrated, i.e., MAXSDA = 
max{i: Hoi is rejected}, using a test procedure that satis- 
fies (4.3). 
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4.2 A Single-Step Test Procedure 

A simple way to test the hypotheses (4.1) is to use Dunnett's 
(1955) simultaneous confidence interval procedure suitably 
modified for the present problem. This single-step procedure 
uses the test statistics based on pairwise contrasts (PC): 

sY,/A2/no?+ 1/n i = 1,2,..., k. (4.4) 

It rejects Hoi if ti > tkp (i = 1, 2. k), where tk(ap is 
the upper a equicoordinate critical constant of the k-variate 
central t-distribution with v degrees of freedom and common 
correlation 

A2 (4.5) 
= A2 +r 

We refer to this as the SSPC procedure. Single-step procedures 
based on other contrasts are also possible. A comprehensive 
tabulation of the critical constants t(a) is given in Bechhofer 

tkvp 
and Dunnett (1988). 

4.3 Step-Down Test Procedures 

Single-step procedures are simple to use, but they are less 
powerful than stepwise test procedures. A step-down proce- 
dure for MAXSDA tests the hypotheses (4.1) in the order 
Hol, H02 . . . v Hok. Each hypothesis is tested at level a and 
the procedure stops the first time a hypothesis is not rejected, 
accepting the remaining hypotheses by implication without 
actually testing them. In other words, continue testing until a 
dose cannot be shown to be safe. If Hoi is the last rejected 
hypothesis, then dose i is declared as the MAXSDA. This 
procedure controls the FWE (4.3) at level a because it is a 
closed testing procedure (Marcus, Peritz, and Gabriel 1976). 
This follows from the fact that the family of hypotheses 
{Hoi, i = 1, . . ., kl of (4.2) is closed. 

Remark 1. It is possible to design step-up procedures 
(Dunnett and Tamhane 1992) for identifying the MAXSDA. A 
step-up procedure would test the hypotheses (4.2) in the order 
Hok, Ho,k-l, . . ., HO1, stopping the first time a hypothesis is 
rejected, rejecting the remaining hypotheses by implication, 
and declaring the corresponding dose level as the MAXSDA. 
We did not consider step-up procedures because their power 
gains over step-down procedures are marginal. Also, it is 
much more difficult to compute their critical constants or the 
adjusted p-values. 

4.3.1 Pairwise Contrasts. We describe two step-down 
procedures, SDIPC and SD2PC, which use the t-statistics 
defined in (4.4) for pairwise contrasts. They correspond to 
SD1 and SD2 procedures given by Tamhane, Hochberg, and 
Dunnett (1996). 

SD]PC Procedure. SDIPC uses a union-intersection test of 
Hoi = n ki Hoj, where the test statistic for Hoj is tj given by 
(4.4). Thus, it rejects Hoi at level a iff Ho,*, Ho,i1 are 
rejected and 

where e = k -i + 1. An equivalent shortcut version of SD1PC 
rejects H0111 where m > i is the highest dose level such that 

M > (a) It is obvious that SDIPC is uniformly more pow- 
erful than SSPC, because t(a)p < t (a) for ? < k. 

SD2PC Procedure. SD2PC uses ordinary a-level Student 
t-tests of the hypotheses Hoi. It rejects Hoi iff Ho,, * * *, Ho, i-l 
are rejected and ti > t(a), where t(Ca) is the upper a crit- 
ical constant of the univariate Student's t-distribution with 
v degrees of freedom. Thus MAXSDA is the highest dose 
level i for which minl<j<i tj > t(a). Note that SD2PC does 
not employ any multiplicity adjustment. It still controls the 
FWE because of the a priori ordering of the hypotheses. See 
Maurer, Hothorn, and Lehmacher (1995) and Hsu and Berger 
(1999) for explanations of why no multiplicity adjustment is 
needed for testing a priori ordered hypotheses. An advantage 
of SD2PC is that it is valid without assumption (3.3), and it 
can be easily applied to dichotomous survival (binomial) data 
and reproduction (Poisson) data, which are two other common 
endpoints used in daphnid studies. 

4.3.2 General Contrasts. Pairwise contrasts regard the 
dose levels as nominal treatments. One way to take into 
account the underlying dose response function, which provides 
a continuum across different dose levels, is to use more gen- 
eral contrasts as test statistics. By choosing the coefficients of 
the contrasts to mimic the shape of the dose response function, 
a more powerful test procedure can be devised. However, spe- 
cific knowledge about the shape of the dose response function 
is usually lacking. 

To test Hoi = Fj iHoj, we again use a union-intersection 
test, where for a test statistic of Hoj we propose to use the 
contrast 

Cij = 
(Yi+ +Yj)-(j-i+')AyO (4.6) 

This contrast compares the average of -i through -j with A30; 
in particular, Cii is a pairwise contrast that compares 5i with 
Ay0. Other contrasts are possible and may be preferable in 
certain situations. We study this contrast in detail because it 
has good power properties for a class of configurations that 
occur in practice, and it provides an illustration of how general 
contrasts and the associated test procedures can be applied. For 
examples of some general contrasts, see Mukerjee, Robertson 
and Wright (1987), Ruberg (1989), and Rom, Costello, and 
Connell (1994). 

The contrasts (4.6) are similar to the Helmert contrasts 
studied in Tamhane, Dunnett, and Hochberg (1996), where 
the focus was on finding the minimum effective dose and 
step-down procedures tested doses for efficacy starting with 
the highest dose. Therefore, the Helmert contrasts compared 
the mean of the highest dose under test with the average 
of the means of the lower doses. Here the focus is on find- 
ing the MAXSD, and the contrasts defined in (4.6) compare a 
specified fraction of the zero dose mean with the average of 
the doses that are not yet shown to be safe. 

The t-statistic for testing the significance of C1 is 

cii 
ijj = s.e.(C11A, 
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where the standard error (s.e.) of Ci1 is given by 

s.e.(Cjj) = s; (j i ) [(j -i + J)A2 + r. (4.7) 
V no 

The a-level Ul test of Hoi rejects if 

max =maxti >t (4.8) 

where for e = k-i + 1, t(e) is the upper a equicoordinate 
critical constant of an e-variate central t-distribution with v 
degrees of freedom and correlation matrix Re = {lpJ2}' where 

(e) 
PJ/= corr(Ci1, Cij,) 

U (-i.+l)[(ji + J)A2 +r] . . . 
i ('i+l1)[(j-i+ J)A2 +r] (- 

(4.9) 

We refer to the resulting SD procedure as the SDIHC proce- 
dure. Note that whereas SDIPC uses the same contrasts and 
hence the same t-statistics, tj, in all steps of testing, SDIHC 
uses different contrasts (but from the same family) and hence 
different t-statistics, ti1. The consequence of using different 
contrasts is that a shortcut version of SDIHC (like the one of 
SDIPC) is not possible. 

To see that (4.8) gives an a-level test of Hoi, note that the 
tii for j = i, . . ., k have in general an e-variate noncentral 
t-distribution with v degrees of freedom and correlation matrix 
Re. The noncentrality parameters are proportional to E(Ci1). 
Because ,aj < A-tto for all j = i .... k under Hoi because of 
the assumption (3.2), we have 

E(Cii) = (Hi + * + /l) )- - i + l AAo _< ? 

Hence, the noncentrality parameters are < 0 with equal- 
ity attained under the least favorable configuration Al-Lo = 

Ii = .. = ILk, where the type I error probability of the 
test (4.8) is maximum = a. Note that this argument makes no 
use of the monotonicity assumption (3.3), which is required, as 
shown by Bauer (1997), to show the error rate control property 
of the procedures studied in Tamhane, Hochberg, and Dunnett 
(1996) for identifying the minimum effective dose. 

The critical constants t(a) can be computed by using 
Schervish's (1984, alg. AS195) algorithm or a simulation- 
based algorithm of Genz and Bretz (1999). A slightly conser- 
vative approximation (Hochberg and Tamhane 1987, p. 146) 
to these critical constants can be more rapidly computed by 
replacing the unequal correlations PJ.J? by their arithmetic aver- 
age and by using Dunnett's (1989, alg. AS251) algorithm for 
product-correlated (Hochberg and Tamhane 1987, p. 365) mul- 
tivariate t. This approximation is used in our program, but all 
calculations in this article were done by using the critical con- 
stants computed by Schervish's method. 

4.4 Multiplicity Adjusted p-Values 

All the above test procedures can be implemented based 
on their multiplicity adjusted p-values, Pi, for each hypothesis 

Hoi as follows. Let pi denote the unadjusted p-value, which 
is the probability that the test statistic for Hoi is greater than 
or equal to its observed value when A/-to = lti = = 1-k For 
example, pi for the SDIHC procedure is the probability that 
the maximal component of an e-variate central t-distribution 
with v degrees of freedom and correlation matrix Re exceeds 
the observed value of tmax i. Then, the multiplicity adjusted 
p-values are given by 

Pi =Pi and Pi=max{pi-1,pi}, i=2,...,k. 

Note that PI < P2 <Pk Then, the sample MAXSDA is 
given by MAXSDA = max{i: Pi' <a}. 

5. POWER SIMULATIONS 

In this section, we study the powers of SDIPC, SD2PC, 
and SDIHC for MAXSD via Monte Carlo simulation; the 
SSPC procedure is not included because it is uniformly less 
powerful than the SDIPC procedure. Consider a parameter 
configuration (/0, I, . . ., I-Lk) with MAXSDA = m for some 
m = 0, . . ., k. For any procedure, we have 

P(MAXSDA < m) + P(MAXSDA = m) 

+ P(MAXSDA > m) = 1. 

The third term, P(MAXSDA > m), is the FWE of the proce- 
dure. We define the second term, P(MAXSDA = m), as the 
power of the procedure. The first term, P(MAXSDA < m), 
represents the type II error probability of declaring some safe 
doses as unsafe. From the above equation, we see that if 
m = k (all doses are safe), then FWE = 0, and if m = 0 
(all doses are unsafe), then P(MAXSDA < m) = 0 so that 
power = 1-FWE > 1-oa. 

The powers and FWE's of SDIPC, SD2PC, and SDIHC 
were simulated for step and linear configurations of dose 
means. 

Step Configuration. This configuration is defined by the fol- 
lowing equation: 

H-Lo =- I1 A = e (A + 5)/-o = fe+ - = HL. 

(A - 5) 0 = An,7l+ I ** = -Lk (5.1) 

for = 0,1, I ... ,k-I and m = e+ 1 . ... ,k, where 8 > 0 
is such that 1 - 8 > A > 8. Note that for this configuration 
MAXSDA = m, MINUDA = m + 1 and 28 represents the sep- 
aration between the means corresponding to MAXSDA and 
MINUDA. The threshold for safety, namely, A/uo, is midway 
between the means of MAXSDA and MINUDA. 

Linear Configuration. Two classes of linear configurations 
were investigated: 

= I = I 
7=-1 

= (A + 28)1tto IL = (A + 8)A0, A17,+1 

=Abto,1 ,j+1-1Lj =281_to for j>m+1 (5.2) 

and 

=***= 7-1 
i = (A + 28)Ho, [7,~ = (A + 8) 1??' Y+- Ij 

= 481tt forj >in, (5.3) 
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Table 3. Multivariate t Critical Constants for v = 50, a = .05, A = .85, 
and r = no/n = 2 

Dimension ? of multivariate t 

Procedure 1 2 3 4 5 

SD1 PC 1.676 1.986 2.156 2.271 2.358 
SD1 HC 1.676 1.887 1.984 2.041 2.079 

where 8 > 0 is such that 1 -28 > A. These two configurations 
imitate situations where there is some toxicity at low doses 
and a linear drop in the means (increase in toxicity) beyond 
MAXSDA. For each value of m, the configuration (5.3) has a 
steeper drop than does (5.2). 

We did not consider umbrella-shaped response functions 
(toxicity first increases and then decreases, or vice versa) 
because although they do occur in efficacy studies, they are 
uncommon in safety studies. 

Under both step and linear configurations, the noncentral- 
ity parameters of the t-distributions for different procedures 
depend on (o1/o/)f,1, A, 8, r = no/n, k, e and m. Thus, the 
powers of the procedures depend on these quantities in addi- 
tion to a and v. We performed simulations for k = 5, a = 
0.05, A = 0.85, u- = 1, ,IL = 10 with 8 = 0.5 and I-o = 20 with 
8 = 1.0, n = 8, and r = 2 (which yields v = 50 degrees of 
freedom assuming a one-way layout design). The multivari- 
ate t critical constants for the simulated procedures are listed 
in Table 3. SD2PC uses a single critical constant, which is 
t.0?5) = 1.676. 50- 

Each simulation run was based on 50,000 simulations. The 
results for procedures for identifying MAXSD.85 are reported 
in Table 4 for -to0 = 10 and in Table 5 for -to0 = 20. Only the 

powers of the procedures are given in these tables, because all 
procedures control the type I FWE at level a = .05. 

The following observations may be made based on the sim- 
ulation results summarized in Tables 4 and 5. 

1. First focus on step configurations. We find that generally 
SDIHC is the most powerful procedure. This is explained by 
the fact that Helmert contrasts, which compare A 0 with sim- 
ple averages of higher dose sample means, imitate the step 
configuration profile. The only exceptions are cases where 
all lower doses preceding MAXSD have the mean = I-Lo 
i.e., e + 1 = m, in the configuration (5.1); in these cases, 
SD2PC generally has the highest power. However, the power 
of SD2PC drops dramatically in other cases. On the other 
hand, the power of SDIHC is more stable. The power of 
SD1PC is also stable, but it is always less than that of SD1HC. 

2. Next focus on linear configurations. Here SD2PC is gen- 
erally the most powerful procedure. There are two configura- 
tions (for bo/o- = 10 and MAXSDA = 4) where SDIHC is 
most powerful; however, those configurations resemble a step 
profile more than a linear profile because MAXSD is the sec- 
ond highest dose, so there is only a single drop in the mean 
after MAXSD. Once again, the power of SDIPC is always 
less than that of SDIHC. 

3. SDIPC is not recommended because it is uniformly 
dominated by SDIHC in terms of power. For step configura- 
tions involving relatively modest increases in toxicity at higher 
doses, SDIHC is preferred of the three procedures. For lin- 
ear configurations involving steep drops in means at higher 
doses, SD2PC is preferred. Note that for linear configurations, 
we could use either modified basin contrasts (Dunnett and 
Tamhane 1998) or linear contrasts (Tamhane, Hochberg, and 
Dunnett 1998; Rom, Costello, and Connell 1994) to achieve 
higher power. We did not investigate these contrasts because 

Table 4. Simulated Powers of SD1PC, SD2PC, and SD1HC for Identifying MAXSDA When A= .85, 
/lo= 1 0, AMAXSD = 91 =1, no = 16, n =8, v =50, and a .05 

Configuration MAXSD (Al, I2 A3 A4 5) SD1PC SD2PC SD1HC 

Step 1 (9.0, 8.0, 8.0, 8.0, 8.0) .128 .320* .194 
2 (9.0, 9.0, 8.0, 8.0, 8.0) .137 .142 .166* 
2 (10.0, 9.0, 8.0, 8.0, 8.0) .152 .323* .211 
3 (9.0, 9.0, 9.0, 8.0, 8.0) .145 .074 .162* 
3 (10.0, 9.0, 9.0, 8.0, 8.0) .158 .144 .179* 
3 (10.0, 10.0, 9.0, 8.0, 8.0) .178 .320* .229 
4 (9.0, 9.0, 9.0, 9.0, 8.0) .159 .043 .168* 
4 (10.0, 9.0, 9.0, 9.0, 8.0) .170 .075 .179* 
4 (10.0, 10.0, 9.0, 9.0, 8.0) .187 .142 .199* 
4 (10.0, 10.0, 10.0, 9.0, 8.0) .222 .315* .254 
5 (9.0, 9.0, 9.0, 9.0, 9.0) .189 .029 .197* 
5 (10.0, 9.0, 9.0, 9.0, 9.0) .201 .046 .206* 
5 (10.0, 10.0, 9.0, 9.0, 9.0) .219 .078 .220* 
5 (10.0, 10.0, 10.0, 9.0, 9.0) .249* .142 .246 
5 (10.0, 10.0, 10.0, 10.0, 9.0) .319 .311 .322* 

Linear 1 (9.0, 8.5, 7.5, 6.5, 5.5) .124 .296* .195 
1 (9.0, 7.0, 5.0, 3.0, 1.0) .129 .322* .194 
2 (9.5, 9.0, 8.5, 7.5, 6.5) .140 .256* .205 
2 (9.5, 9.0, 7.0, 5.0, 3.0) .146 .282* .205 
3 (9.5, 9.5, 9.0, 8.5, 7.5) .158 .224* .217 
3 (9.5, 9.5, 9.0, 7.0, 5.0) .169 .248* .222 
4 (9.5, 9.5, 9.5, 9.0, 8.5) .185 .195 .232* 
4 (9.5, 9.5, 9.5, 9.0, 7.0) .206 .218 .247* 

*Maximum power for each configuration. 
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Table 5. Simulated Powers of SD1PC, SD2PC, and SD1HC for Identifying MAXSDA When A= .85, 
-o =20, MAXSD = 18, o-=1, no= 16, n=8, v=50, and ac=.05 

Configuration MAXSD (Al, I, 2 43 45) SD1PC SD2PC SD1HC 

Step 1 (18.0, 16.0, 16.0, 16.0, 16.0) .528 .770* .635 
2 (18.0, 18.0, 16.0, 16.0, 16.0) .547 .621 .629* 
2 (20.0, 18.0, 16.0, 16.0, 16.0) .564 .770* .649 
3 (18.0, 18.0, 18.0, 16.0, 16.0) .575 .518 .644* 
3 (20.0, 18.0, 18.0, 16.0, 16.0) .585 .623 .650* 
3 (20.0, 20.0, 18.0, 16.0, 16.0) .606 .771* .670 
4 (18.0, 18.0, 18.0, 18.0, 16.0) .620 .440 .673* 
4 (20.0, 18.0, 18.0, 18.0, 16.0) .627 .517 .675* 
4 (20.0, 20.0, 18.0, 18.0, 16.0) .641 .622 .681* 
4 (20.0, 20.0, 20.0, 18.0, 16.0) .668 .772* .703 
5 (18.0, 18.0, 18.0, 18.0, 18.0) .697 .381 .735* 
5 (20.0, 18.0, 18.0, 18.0, 18.0) .703 .441 .737* 
5 (20.0, 20.0, 18.0, 18.0, 18.0) .714 .519 .740* 
5 (20.0, 20.0, 20.0, 18.0, 18.0) .731 .623 .747* 
5 (20.0, 20.0, 20.0, 20.0, 18.0) .771* .771* .771* 

Linear 1 (18.0, 14.0, 10.0, 6.0, 2.0) .516 .724* .621 
1 (18.0, 17.0, 15.0, 13.0, 11.0) .528 .770* .635 
2 (19.0, 18.0, 17.0, 15.0, 13.0) .549 .725* .633 
2 (19.0, 18.0, 14.0, 10.0, 6.0) .564 .769* .649 
3 (19.0, 19.0, 18.0, 17.0, 15.0) .585 .726* .648 
3 (19.0, 19.0, 18.0, 14.0, 10.0) .606 .771* .670 
4 (19.0, 19.0, 19.0, 18.0, 17.0) .626 .727* .665 
4 (19.0, 19.0, 19.0, 18.0, 14.0) .668 .771* .703 

*Maximum power for each configuration. 

our objective was to illustrate the methodology with one type 
of contrast. Procedures for other types of contrasts can be sim- 
ilarly derived and implemented if desired. 

4. The results for o/lo- = 10 and ol/o- = 20 are similar, but 
the powers in the latter case are more in line with what would 
be required in practical applications. It must be remembered 
that we used a sample size of only 16 for the zero dose and 
8 for each nonzero dose in these simulations. As an aid in 
designing dose response studies, it would be desirable to be 
able to determine, at least empirically, the sample sizes no and 
n required to guarantee a specified power for given values of 
A, a, and 8 and assuming a particular value of Aolo-. However, 
this is a topic for a separate paper. 

6. EXTENSIONS TO UNBALANCED DATA 

Thus far we have assumed the one-way setup with balanced 
data, i.e., n1 = = nk = n, with no possibly different from 
n. In this section, we give the changes needed to extend the 
results to the case of unequal ni's. We use the notation ri= 
no/ni in the following. 

SSPC and SDPC Procedures. The ti statistics of (4.4) use 
ni in place of n. The k-variate t-distribution used to compare 
these ti statistics has unequal correlations pij, which replace 
the common p of (4.5) by 

A2 A A 
ijn' 1(A2+ri)(A2+rj) - /A2?ri 1A2?rj 

Note that the pij have a product correlation structure, which 
makes it relatively easy to compute the required critical 
constants. 

SD]HC Procedure. The formula (4.7) for s.e.(Cij) changes 
to 

s~~~~~~~~~ 
s (j-i + 1)2A2 +r1. 

h=i 

The formula (4.9) for corr(Cij, Cij,) changes to 

p(t? ( j-i+ l ) ( _ i + I )A2 + Ei=ir 

-(j -i + 1)2A2 + L, ri,] [(j' - i + 1)2A2 + L= r11] 

(i < j < j' < k). 

The procedure remains unaltered in other respects. A For- 
tran program to implement all proposed procedures for un- 
balanced data is available at http://statlib@lib.stat.cmu.edu/ 
general/maxsd.for. 

7. RETURN TO EXAMPLE OF SECTION 2 

Refer to the summary statistics in Table 1 with the change 
that now there is a single zero dose control group (obtained 
by pooling the water and solvent controls) with a sample size 
of 80 and a sample mean of 4.000 mm. Note that the sample 
means are in the monotone order. All calculations are done 
using the Fortran program referenced above. 

SDIPC and SD2PC use the same t-statistics given by (4.4), 
which are listed in Table 6 along with the corresponding con- 
trasts and their standard errors. The adjusted p-values for the 
two procedures are also listed in this table. We see that at 
a = .05, SDIPC rejects Ho,, H02, and H03, whereas SD2PC 
rejects H04 in addition. Therefore, SDIPC identifies dose 3 as 
MAXSD.85, and SD2PC identifies dose 4 as MAXSD.85. 

Calculations for the SDIHC procedure are summarized 
in Table 7. For each step, the table shows the contrast 
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Table 6. t-Statistics and Adjusted p-Values for SD1PC and SD2PC for 
Identifying MAXSD.85 

Adjusted p-value 

Dose i Contrast value Std. Error tj SD1PC SD2PC 

1 .591 .033 18.072 .000 .000 
2 .411 .032 12.685 .000 .000 
3 .230 .034 6.834 .000 .000 
4 .060 .034 1.779 .074 .038 
5 -.190 .034 -5.502 1.000 1.000 

coefficients, the contrast values and their standard errors, 
the corresponding t-statistics (with the maximum t-statistic 
marked by an asterisk), and the p-value. The adjusted p-values 
are readily obtained from the relation -i = max(pi_l, P). We 
see that testing stops with step 4, because -3 = i2 = = 

0.000 < 0.05, but p4-_= 0.060 > 0.05. Therefore, SDIHC iden- 
tifies dose 3 as MAXSD.85. 

In this example, SD2PC identified a higher dose as 
MAXSD.85 than did both SDIPC and SDIHC. This is the 
result of nearly linear decrease in dose means under which 
configuration SD2PC is generally more powerful. 

8. DISCUSSION 

In this article, we give multiple test procedures for identify- 
ing the MAXSD. The SDIHC procedure is generally found to 
be superior for step configurations, whereas SD2PC is found 
to be superior for linear configurations. As indicated follow- 
ing the discussion of simulation results in Section 5, it is 
possible to devise special contrasts for optimum power per- 
formance for each type of configuration. Certainly, any infor- 
mation available about the dose response function should be 
exploited in the selection of the contrasts. However, the true 
configuration is always unknown. Even if the general shape 
of the dose response function is known, the best contrast to 
use often depends on whether the MAXSD is at the high end, 
in the middle, or at the low end of the dose range, and this 

is unknown. Also, in industrial settings, many compounds are 
routinely tested for toxicity, and each one has a different dose 
response function. Therefore, it is futile to aim for the most 
powerful procedure in each case. Rather, it is useful to have a 
simple and easy-to-explain procedure (without sacrificing too 
much power) that is robust in terms of power over a wide 
class of commonly occurring dose response functions. 

SD2PC enjoys simplicity (requiring only a sequence of t- 
tests comparing each dose with the zero dose), and it has the 
best power performance (among the procedures compared) in 
many commonly occurring cases. However, it suffers a dra- 
matic loss of power in those step configurations where toxicity 
at low doses is the same as that at MAXSD, causing it to stop 
too soon and to declare too low a dose as safe (a type II error). 
On the other hand, SDlHC is more robust in terms of power, 
but it is not as simple. Our general recommendation is to use 
SD2PC, except in the situations indicated, where SDIHC or a 
similar contrasts-based procedure is preferable. 

Generally speaking, toxicity increases with dose, so the 
weak monotonicity assumption (3.2) appears reasonable for 
most safety studies. In any case, toxicologists should be con- 
sulted to check assumption (3.2). If that assumption is vio- 
lated, then a dose lower than MAXSDA is unsafe. In this case, 
SD2PC still controls the type I FWE, because it compares 
each dose with the zero dose. But SDIHC may not control the 
type I FWE, and thus an unsafe dose i with ,-i < A-to may be 
declared as safe (i.e., Hoi will be rejected) if a dose j > i has 
,Li >> Al-to. 

The definition (3.1) of MAXSDA and MINUDA may be 
modified to incorporate the weak monotonicity assumption 
(3.2), as follows: 

MAXSDA = max{i: ,tj > Al-o, V j < il and 

MINUDA = min{i: /uj < A/uo, V j > i}. (8.1) 

To some, this may seem a more natural definition of MAXSDA 
and MINUDA. To identify the MAXSDA according to this 

Table 7. Calculations for SD 1HC Procedure 

Contrast coefficients 

Step i Contrastj 0.85O Y2 C.. s.e.(C,1) t,1 Pi 

1 1 -1 1 0 0 0 0 .591 .033 18.072 .000 
2 -2 1 1 0 0 0 1.001 .052 19.407* 
3 -3 1 1 1 0 0 1.231 .070 17.613 
4 -4 1 1 1 1 0 1.291 .088 14.752 
5 -5 1 1 1 1 1 1.102 .105 10.487 

2 2 -1 0 1 0 0 0 .411 .032 12.685* .000 
3 -2 0 1 1 0 0 .641 .052 12.268 
4 -3 0 1 1 1 0 .700 .070 9.952 
5 -4 0 1 1 1 1 .511 .088 5.793 

3 3 -1 0 0 1 0 0 .230 .034 6.834* .000 
4 -2 0 0 1 1 0 .290 .053 5.465 
5 -3 0 0 1 1 1 .100 .071 1.407 

4 4 -1 0 0 0 1 0 .060 .034 1.773* .060 
5 -2 0 0 0 1 1 -.130 .054 -2.425 
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definition, we test the following family of hypotheses: 

Ho'i =U Hoj 
j=1 

= {At least one of the doses j = 1, 2,... , i is unsafe}, 

i= 1,2,... .,k. 

It is easy to check that the family {Hoi, i = 1, 2, . . . , k} is 
closed and the FWE for this family equals P{MAXSDA > 
MAXSDA}, which we want to control at level a. A step-down 
procedure begins by an a-level test of ni=l Hoi = Ho' = Ho0I 
If Ho' = Ho, is rejected, then it does an a-level test of 
Oi=2 Hoi = Ho2. However, Ho2 = HoH J HH2 and Ho, is already 
rejected; therefore, all we need is an a-level test of H02. Con- 
tinuing in this manner, we see that this procedure reduces to 
the SD2PC procedure. This agrees with the previous observa- 
tion that SD2PC does not require assumption (3.2). Nonethe- 
less, SDIHC is definitely a viable option because (a) for 
toxicity studies, a gross violation of assumption (3.2) is highly 
improbable; (b) SD1HC has a more stable power performance; 
and (c) SDIHC generally has the best power performance for 
step configurations. 

We assumed that a lower response means a less safe dose. 
In many applications, a higher response means a less safe 
dose. In these applications, one would use a value of A > 1, 
e.g., 1.10 or 1.20, corresponding to a 10% or a 20% increase 
over the zero dose mean, respectively. The MAXSDA would 
be defined as max{i: Huti <A14o}I 

We have defined the MAXSD in terms of a multiplicative 
threshold constant A. Some investigators may prefer to spec- 
ify the MAXSD in terms of a shift from the zero dose mean 
by an additive threshold constant S > 0, i.e., MAXSD5 = 
max{i : /ui < /-o + S} (assuming that a higher response means 
a less safe dose). Alternatively, the log-transformation of the 
response variable (if it makes the assumptions of normality 
and equal dose group variances more nearly accurate) will also 
transform the multiplicative constant A into an additive con- 
stant S = log A. In this case, test procedures can be developed 
along the lines of those in Tamhane, Hochberg, and Dunnett 
(1996) and Dunnett and Tamhane (1998). 

[Received May 1998. Revised July 2000.] 
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